Multiplicity and structures for traveling wave solutions of the Kuramoto-Sivashinsky equation

نویسنده

  • Bao-Feng Feng
چکیده

The Kuramoto-Sivashinsky (KS) equation is known as a popular prototype to represent a system in which the transport of energy through nonlinear mode coupling produces a balance between long wavelength instability and short wavelength dissipation. Existing numerical results indicate that the KS equation admits three classes (namely, regular shock, oscillatory shock, and solitary wave) of nonperiodic traveling wave solutions and families of multiple solutions in each class. However, the details of multiple solutions are still unclear because of numerical accuracy. In this work, a rational spectral approach is used to compute these multiple traveling wave solutions. Owing to the high accuracy of the employed method, the new families of regular shock waves are found and the fine structure of each family is recognized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Meromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation

We determine all cases when there exists a meromorphic solution of the ODE νw + bw + μw + w/2 +A = 0. This equation describes traveling waves solutions of the KuramotoSivashinsky equation. It turns out that there are no other meromorphic solutions besides those explicit solutions found by Kuramoto and Kudryashov. The general method used in this paper, based on Nevanlinna theory, is applicable t...

متن کامل

Exact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation

In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.

متن کامل

Application of Optimal Homotopy Analysis Method for Solitary Wave Solutions of Kuramoto-Sivashinsky Equation

In this paper, the optimal homotopy analysis method is applied to find the solitary wave solutions of the Kuramoto-Sivashinsky equation. With three auxiliary convergence-control parameters, whose possible optimal values can be obtained by minimizing the averaged residual error, the method used here provides us with a simple way to adjust and control the convergence region of the solution. Compa...

متن کامل

On the State Space Geometry of the Kuramoto-Sivashinsky Flow in a Periodic Domain

The continuous and discrete symmetries of the Kuramoto–Sivashinsky system restricted to a spatially periodic domain play a prominent role in shaping the invariant sets of its chaotic dynamics. The continuous spatial translation symmetry leads to relative equilibrium (traveling wave) and relative periodic orbit (modulated traveling wave) solutions. The discrete symmetries lead to existence of eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004